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We investigate the influence of dissipation on envelope solitons on anharmonic chains. We consider both
Stokes and hydrodynamical damping and derive the evolution equations for the envelope in both the con-
tinuum and the quasi-continuum approximation of the chain. We introduce an appropriate collective variable
ansatz for the envelope in order to describe the effect of damping on the soliton shape. We derive ordinary
differential equations for the evolution of the three collective variables amplitude, width, and chirp which
describe the spatial modulation of the envelope. The analytical results are in good agreement with the simu-
lations of the discrete system for high-energy excitations on the chain. Our results derived from the quasi-
continuum approximation show significant improvements compared to the continuum approximation.
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I. INTRODUCTION

Nonlinear one-dimensional lattices bear various interest-
ing phenomena alien to linear physics. Zabusky and Kruskal
first recognized in computer experiments that nonlinear co-
herent excitations propagate in such systems with constant
velocity and shape. They coined these solitary waves solitons
because they show particle-like behavior, e.g., robustness in
scattering among themselves �1�. These pulses are solutions
of Boussinesq �Bq� or Korteweg-de Vries �KdV�-type equa-
tions �in the long wavelength approximation�. The shape of
these pulses depends on the interaction potential of the par-
ticles whereas realistic interaction potentials always generate
a compressive supersonic pulse. Other solutions also exist
which possess a rapid internal oscillation; these solutions are
called envelope solitons. The nonlinear Schrödinger equation
�NLS� governs the evolution of the envelope of the soliton in
the continuum description. The excitations with small wave
numbers k are called breathers and may be described by a
KdV equation �2�.

Due to their robust character, the soliton concept is useful
in explaining essential features of molecular chains such as
the energy transport in polypeptide chains in muscle proteins
�3–7� and also the energy transport �8� and the conforma-
tional transitions and denaturation �9,10� of the DNA mol-
ecule. Especially in the case of biomolecules, damping and
thermal fluctuations appear as natural perturbations, but, up
to now, the main attention was paid to soliton dynamics in
the absence of such perturbations. Recently Arévalo et al.
investigated the effect of damping and thermal fluctuations
on lattice solitons in the quasi-continuum approximation
�QCA� where perturbed Bq- or KdV-type equations were
used �11,13�. The properties of envelope solitons on a chain
connected to a heat bath were discussed in �12�. The enve-
lope solitons were found to possess an anomalous diffusion

behavior �superdiffusion� which results from the frailty of
the envelope solitons with respect to the damping. Therefore,
our aim in the present paper is to focus on the behavior of
envelope solitons on damped chains and seek an analytical
expression for the time dependence of soliton parameters
like amplitude, width, and velocity. We start with the discrete
equations for the damped lattice and derive an NLS-type
equation with a damping term in the continuum limit when
we assume the damping to be small. This type of equation
arises in many different fields, e.g., in nonlinear optics,
where the NLS describes the behavior of laser beams in op-
tical fibers. The continuum approximation �CA� has funda-
mental mathematical problems, which were overcome by the
quasi-continuum approximation �QCA� of Collins �14� and
later by the versions of Rosenau �15� and Hochstrasser et al.
�3�. With the QCA, one derives well-behaved partial differ-
ential equations �PDEs� like the improved Bq �IBq� instead
of the Bq equation in the continuum limit of the anharmonic
chain. Up to now the QCA according to Hochstrasser et al.
has been enhanced by Neuper et al. �16� for envelope soli-
tons. Our goal is to further expand the QCA to describe a
damped chain.

Besides the continuum approximation, a strong tendency
to analytically investigate nonlinear discrete systems �see,
e.g., �17,18�� arose in recent years. Such systems like non-
linear coupled oscillators can be described by the discrete
nonlinear Schrödinger equation �DNLS� which has long been
applied in various contexts in physics and biology �e.g., �19�
and references therein�. Particular attention has been paid to
specific solutions of the DNLS, called intrinsic localized
modes, or, alternatively, discrete breathers because they are
spatially localized and periodic in time.

After introducing the model �Sec. II� and reviewing the
calculation of supersonic envelope solitons in the CA and the
QCA �Sec. III� of the unperturbed chain, we present in Sec.
IV a new evolution equation for an envelope soliton in the
QCA of a damped atomic chain. In Sec. V, we describe the
influence of the hydrodynamical or Stokes damping on en-
velope solitons using collective variables, e.g., velocity and*Electronic address: christian.brunhuber@uni-bayreuth.de
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width, and determine their dynamics both in the CA and the
QCA. The comparison of the analytical results with simula-
tions in Sec. VI shows that we are able to describe the shape
and behavior of damped envelope solitons for long times and
that the results of the QCA are superior in the case of narrow
solitons.

We especially emphasize that our theory succeeds in ex-
plaining the modulations of the envelope of a damped lattice
soliton, a feature which was to our knowledge never ob-
served before for solitons on anharmonic atomic chain mod-
els.

II. MODEL

We consider an anharmonic chain of particles with mass
M �M =1� and an interatomic spacing a �a=1�. We denote yn

as the longitudinal displacement of the nth particle from its
equilibrium position and �n=yn+1−yn as its relative displace-
ment or strain. The nearest neighbors interact via an interac-
tion potential with a harmonic and a quartic term

V��n� =
�

2
�n

2 +
�

4
�n

4. �1�

For the more general case of cubic and quartic terms, the
calculations are similar, yet require a greater technical effort.
The stability of the soliton solution in the CA is further re-
duced by the addition of a cubic term.

We want to allow dissipation in our system and choose
Stokes or hydrodynamical damping for every particle n:

Fn
St = − �Stẏn, �2�

Fn
hy = �hy�ẏn+1 − 2ẏn + ẏn−1� . �3�

The Stokes damping corresponds to the situation of a chain
in a viscous liquid. In contrast to the Stokes damping, the
hydrodynamical damping is an inner mechanism of the sys-
tem since it depends on the relative motions of the particles.
One can easily see that this system obeys the following equa-
tions of motion:

�̈n = V���n+1� − 2V���n� − V���n−1� − �St�̇n

+ �hy��̇n+1 − 2�̇n + �̇n−1� . �4�

We continue with the continuum approximation of this sys-
tem. Notice that the two damping terms yield a complex
dispersion relation �13�. The real part resembles the har-
monic dispersion relation of the unperturbed chain. Devia-
tions do occur with both damping mechanisms, although
only for small wave numbers k for Stokes and for large wave
numbers for hydrodynamical damping. Thus it is problematic
to use the Stokes damping for pulse solitons since their spec-
trum is located at k=0, where the Stokes damping causes a
dispersion relation with only an imaginary part. This means
that the long-wavelength region becomes overdamped with
Stokes damping �13�. For envelope solitons we do not expect
those problems, since the spectrum is located at the wave
number of the carrier wave kc�0.

III. QUASI-CONTINUUM APPROXIMATION

In this section we shortly present the results from the
literature and the solutions for envelope solitons in the CA
and the QCA which we use as initial conditions of both
simulations and theory. The envelope functions of small-
amplitude excitations with an internal mode on anharmonic
chains are solutions of the NLS �2�. One applies an ansatz
representing a narrow-band wave packet on the discrete sys-
tem with an expansion parameter � and proceeds to the con-
tinuum limit only for the envelope functions of the ansatz.
This approach is known as the derivative expansion method
and was first applied to the anharmonic chain by Tsurui �20�.
This procedure uses the multiple scales method where one
introduces the new variables xi=�ix and ti=�it. The NLS is
the lowest-order equation in � where nonlinear and disper-
sive terms appear. It is known that the CA exhibits certain
mathematical problems. In the case of pulse-shaped excita-
tions the CA leads to a Boussinesq-type equation with an
ill-posed initial value problem and the need of additional
boundary conditions compared to the discrete problem �15�.
The QCA was found to be a more convenient tool to calcu-
late soliton solutions �3,14,15�. Our goal is to show the effect
of damping on the envelope soliton. In order to be sure not to
miss important effects, we also do not rely on the CA but use
the QCA of the chain as a starting point for our calculations.
We will occasionally refer to the CA procedure where we
especially focus on Ref. �26�. In the case of the QCA, Eq. �4�
with �St=�hy =0 is transformed into an operator equation us-
ing a full Taylor expansion of the potential terms �n→x,
V���n±1�→e±�xV�(��x , t�)�

�̈�x,t� = 2�cosh��x� − 1�V�„��x,t�… . �5�

The QCA for oscillatory excitations was performed by Neu-
per et al. �16� using the procedure of Hochstrasser et al. �3�
where the QCA is applied to the Fourier transformed equa-
tion �5�. In �16� an ansatz is given by an expansion into
harmonics of 	=kn−
t:

�n�t� = �
m�Z

�m�z�eim	, �m = �̃−m, �6�

where k is the wave number and 
 is an amplitude-
dependent frequency to be determined later. The envelopes
�m of the soliton in the QCA move with constant velocity v
and therefore depend on the coordinate z=x−vt. Inserting
the ansatz �6� into �5� and applying the procedure of �3�
yields a system of second-order differential equations in z for
the envelope functions �m �see �16� for details�. This system
was also used to construct an iterative procedure for the nu-
merical computation of very discrete soliton solutions on
chains with arbitrary interaction potentials �16�. For the sake
of simplicity, we will restrict ourselves to the case of a quar-
tic anharmonicity because in this case the multiple scale
method which was used to approximately solve the equations
reduces to only one equation for the first harmonic �1. If one
uses the normalized soliton velocity co=v /vh�1, the solu-
tion of �1=� determines the bright soliton soliton in the
QCA �16�
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��z,t� = �ei�kx−co
ht� + �e−i�kx−co
ht�

= 4
�co

2 − 1

�6�

�

sech�2�co
2 − 1

co
2 z� · cos�kx − co
ht + �o� ,

�7�

with


h = 2�� sin� k

2
�, vh = �� cos� k

2
� .

Equation �7� has a similar form as the solution of the NLS in
the CA �2,12�:

��z,t� = �ei�kx−
ht� + �̃e−i�kx−
ht�

= 4
�co

2 − 1

�6�

�

sech�2�co
2 − 1z� · cos�kx − co
ht + �o� .

�8�

The widths of the two solutions differ distinctly for large
velocities co
1.1. In this regime the continuum approxima-
tion for the envelope begins to fail and the solution �7�
achieves better results than �8�. An additional cubic term in
the potential �1� does not principally change the above pro-
cedure but requires a higher technical effort since one has to
consider additionally the envelope functions for the harmon-
ics m= �0,2�. This extension leads to a solution similar to �7�
and �8� with a different amplitude �2,16�. We have not yet
considered any damping terms in the QCA. In the case of a
damped system, we can no longer assume that the soliton
propagates with a permanent profile and a fixed velocity co.
Therefore, we must consider explicitly time-dependent enve-
lope functions �m(z�t� , t) and a time-dependent soliton veloc-
ity v�t�=co�t�vh and a dispersion relation 
=co�t�
h �k is
still fixed�.

IV. QUASI-CONTINUUM APPROXIMATION FOR THE
DAMPED SYSTEM

The aim of the present work is to generalize the CA and
QCA results to damped systems and so we start with the
discrete equations of motion for Stokes ��St�0, �hy =0� or
hydrodynamical damping ��St=0, �hy �0�:

�̈n = V���n+1� − 2V���n� + V���n−1� − �St�̇n

+ �hy��̇n+1 − 2�̇n + �̇n−1� . �9�

We insert an ansatz such as �6� with explicit time-dependent
envelope functions and take into account that the velocity of
the soliton could change

�n�t� = �
m�Z

�m�z�t�,t�eim	, �−m = �̃m,

z�t� = n − 	
0

t

v�t��dt�. �10�

We proceed like in �16�, but the coefficients Wm(z�t� , t) of the
Fourier series for the force V���n� become time dependent,
since they depend on the envelope functions. Inserting �10�
in Eqs. �9� yields the following equations for Stokes damp-
ing ��n→�z, �t→−v�t��z+�t�,

�− im
�t� − v�t��z + �t�2�m�z,t�

= 4 sinh� imk + �z

2
�2

Wm�z,t�

+ �St�v�t��z + im
 − �t��m�z,t� , �11�

and for hydrodynamical damping

�− im
�t� − v�t��z + �t�2�m�z,t� = 4 sinh� imk + �z

2
�2

Wm
D�z,t� ,

�12�

where

�
m

Wmeim	 = V���
l

�le
il	� ,

Wm
D�z,t� = Wm�z,t� + �hy�̇m�z,t�− �hyim
�t��m�z,t� .

�13�

The functionals Wm�z , t� depend only on the envelope func-
tions �l�z , t� �13� and collect all terms which belong to the
harmonic m. The derivatives 
̇ and v̇ are omitted because
these terms would drop out when we later calculate the equa-
tions in the different orders of �. A rough estimate for the

time dependence of co gives cȯ�t�
�co�0�−1��
�4. As this
change of the soliton velocity is so slow, we can treat co as a
constant parameter in the following steps. The inclusion of
the hydrodynamical damping in our scheme is unproblem-
atic, because this damping term has the same symmetry as
the potential term. We proceed similarly to the unperturbed
case and transform these equations to the Fourier space. For
these equations, we must use the space and time Fourier
transformations for the envelope functions �m�z , t� and the
functionals Wm�z , t�

fm�z,t� = 	
�

−� 	
�

−�

dqd� f̄m�q,��ei�qz−�t�. �14�

The variable � represents a frequency and appears since our
problem became explicitly time dependent. We obtain the
following equations for Stokes and hydrodynamical damping
in the new coordinates �q ,��
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�15�

As in the CA or QCA, we continue restricting ourselves to
small envelope excitations ��m
�m for m�0� and assume
the damping to be small ��
�2�. The spectrum of the soliton
should then be located around �q ,��= �0,0�. Therefore, we
may proceed with a Taylor expansion of the functions
am

St/hy�q ,��:

am�q,�� = a�0,0�,m + a�1,0�,mq + a�0,1�,m� + a�2,0�,mq2

+ a�0,2�,m�2 + a�1,1�,mq� + ¯ . �16�

After this approximation, we transform the equations �15�
back to the position space. As mentioned before for the un-
perturbed system, only the envelope functions �±1 are non-
zero in case of an interaction potential with only a quartic
anharmonicity �m= ±1�. Because of the stipulation �1
�, it
was pointed out in �16� that it is reasonable to assume that
the derivative �z enters the equations in O���. Since the
damping constant � was specified to be in order O��2�, we
assume that the time derivative of the envelope appears in
the same order. If we apply these assumptions to our previ-
ous results, we can neglect the terms for a�1,1�,±1 and a�0,2�,±1

which appear in a higher order than O��3�. Taking into ac-
count the concrete form of a±1

St/hy�q ,��, we can now calculate
the explicit expressions for the remaining Taylor coefficients
and the dispersion relations for the two different damping
mechanisms �m= ±1�:

a�0,0�
St/hy =

�v2

vh
2 + O��St

2 � = �co�t�2 + O��St
2 � , �17�

a�0,1�
St/hy =

2co�t��

h

, �18�

a�2,0�
St/hy =

�co�t�2

4
+ O��St

2 � , �19�


St = co�t�
h�k� − mi
�St

2
+ O��St

2 � , �20�


hy = co�t�
h�k� . �21�

The dispersion relations are calculated by assuming a�1,0�,1
=0 as done in �3,16� for the undamped chain. Inserting
�17�–�21� in �15� and transforming back to the �z , t� space

results in the following modified NLS �mNLS� equation for
the envelope ��z , t�=�1�z , t�:

i��� + i�St/hy� + co����z
2� +

�

co���
���2� − 4

co���2 − 1

co���
� = 0,

�22�

where

� = −

h

8
t, � =

12�

�
,

�hy = −
4�hy
h

�
, �hy = −

4�St


h
. �23�

The envelope function �−1= �̃ obeys the c.c. mNLS �22�.
This equation looks similar to a damped NLS. If the addi-
tional parameter co�t�, the normalized velocity of the enve-
lope soliton, is close to 1, the equation �22� then corresponds
to the damped NLS we would obtain in the CA.

In the next section, our goal is to investigate the proper-
ties of the damped envelope soliton. We perform a collective
variable approach for the equation �22� in terms of a chirped
trial function, which was found to be a good ansatz to ana-
lyze NLS-type equations �22�:

V. COLLECTIVE VARIABLE APPROACH

In the case of a damped NLS ��22� with co→1� and the
mNLS ��22� with co�1�, it is convenient to use a variational
analysis since it is easy to find the Lagrange densities L for
these equations. One only must insert a trial function with
several collective variables �CVs� in the Lagrange density
and calculate the Lagrangian L by a spatial integration. One
can then minimize the action according to the Hamiltonian
principle with respect to the time-dependent CV xi�t� of the
trial function,

d

d�

�L

�xi�
−

�L

�xi
= 0, �24�

in order to obtain a set of ordinary differential equations
�ODEs� for the CV. One could also apply other methods like
the projection method �23,24� or a perturbation scheme
based on the inverse scattering theory for the NLS �25�. But
in this context we are sure that the shape of the CV ansatz
and the number of CVs are the items which decide on the
results rather than the perturbation procedure itself. A similar
procedure was used in nonlinear optics for the NLS �22,26�
but to our knowledge never in the context of lattice solitons
within the framework of the QCA. For the mNLS �22� we
can find a Lagrange density for either Stokes �=�St or hy-
drodynamical damping �=�hy

L = exp�2����I��̃��� + co�����z�2 −
�

2co���
���4

−
4�co���2 − 1�

co���
���2
 . �25�

The crucial point in the variational analysis of the mNLS
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�22� is the role of the parameter co, which is the normalized
velocity of the envelope soliton which we do not have in the
corresponding NLS equation �limit co→1�. We present a CV
ansatz which slightly differs from the ansatz in �22,26�:

� = A���sech� z − Z���
B���

� · exp�±i����z2 ± iQ����z − Z����� .

�26�

For the damped NLS in the CA one would have to use an
additional phase which takes a similar role as co does here in
the QCA. The amplitude A, width B, and chirp factor � are
used as collective variables. The CV � enables a z-dependent
spatial modulation of the envelope function ��z , t� �chirp�.
The two CVs Q and Z were added to enable a center of mass
motion for the envelope soliton relative to the coordinate z�t�
�10�, but they do not evolve in time when initialized with
zero �Q=Q�0�=Z=Z�0�=0�.

If we insert this ansatz in the Lagrange density, calculate
the Lagrangian, and minimize with respect to the CV in the
ansatz, we obtain the following system:

N�t� = No exp�2�
wh

8
t� , �27�

dB

dt
= −


h

2
co�t���t�B�t� , �28�

d�

dt
= −


h

2
co�t�� 1

4B4

4

�2 − �2� +
2�

�2co�t�
A2

B2 , �29�

co�t�2 =
1

1 + 6B�t�2�10�A�t�2B�t�2

8
+ 6B�t�2� , �30�

No = 2BoAo
2 =

2co�0��co�0�2 − 1

3
,

Bo =
2�co�0�2 − 1

co�0�
, ��0� = 0.

For co�0�→1, the equations �28� and �29� correspond to the
equations in the CA calculated by Rasmussen et al. �26� in
the context of the critical collapse in the NLS with arbitrary
degree of nonlinearity �. The derived equations for the CVs
in the QCA �and the CA� can be solved numerically �27� and
compared with the simulations of the discrete system.

VI. SIMULATIONS

It is now time to compare the results of the CV analysis
with the simulations of the original, discrete system. First we
discuss the algorithm of the time integration and the numeri-
cal routines to find the position, norm, and amplitude. Then
we compare the simulation results with the solution of the
ODEs for the CVs in the last section.

A. Algorithm

The discrete equations of motion for the anharmonic
chain with N particles in relative coordinates read

�̈n = ���n+1 − 2�n + �n−1� + ���n+1
3 − 2�n

3 + �n−1
3 �

− �St�̇n + �hy��̇n+1 − 2�̇n + �̇n−1� , �31�

where we always choose �=�=1 in the simulations. At t
=0, the chain is initialized by a discrete version of the enve-
lope soliton �8� and �7�. We choose periodic boundary con-
ditions in order to be able to run long simulations,

dl�0

dtl =
dl�N−1

dtl ,
dl�N

dtl =
dl�1

dtl , l = 0,1. �32�

We use relative coordinates because in this representation the
amplitude of the envelope soliton vanishes at infinity. The
simulations are performed for a chain with at least 1000 lat-
tice points. The time integration is carried out by using the
Heun method �28� which was successfully used for the nu-
merical solution of partial differential equations and
difference-differential equations, coupled to either an addi-
tive or a multiplicative noise term �29–32�. The initial con-
dition for the chain at t=0 is presented in Fig. 1�a� together
with a snapshot of the chain at a later time t �Fig. 1�b�� which
is comparable to t̄=�St

−1t=1. One can see that the damping
has a large effect on the shape of the soliton. The amplitude
of the soliton decreases while the width shows a clear in-
crease for these times. In order to detect the position of the
soliton we search for the center of the norm M of the enve-
lope soliton. In the continuum description the norm M is a
conserved quantity for the unperturbed soliton as it results to
be twice the norm N of the envelope:

M = 	
−�

�

��x,t�2dx�
�8�

2	
−�

�

���x,t��2dx = 2No. �33�

In the simulations we identify M with a discrete sum over the
core of the envelope, although the discreteness effects are
negligible for low-energy solitons �co−1 small�. We define
the soliton position xs�t� as the center of the norm or mass M
of the envelope soliton

xs�t� =
�i=n1

n2 i�i
2

�i=n1

n2 �i
2

, �34�

where the integers n1 and n2 mark the core of the envelope
and depend on the position of the soliton and its width at the
last time step.

We use the quantity �(xs�t�), the relative displacement of
the soliton position, to estimate the amplitude A of the
damped soliton, since �(xs�t�) takes values in the range
�+A ,−A�. After typical times of a few t̄, the amplitude of the
envelope soliton �in relative coordinates� becomes very small
compared with that of the start soliton. For pulse solitons, it
takes much longer times t̄ until the soliton disappears. The
physical picture which explains the strong influence of the
damping on the envelope soliton is the rapid motion of the
particles in the profile of the envelope due to the internal
mode. The particles in the profile of a pulse soliton move
much slower and therefore dissipate less energy.
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B. RESULTS

We will test the quality of our theory by the results of the
simulations of the discrete system. First of all we can check
the predicted behavior for the norm of the soliton M�t�. It has
been known for a long time that the norm M of the damped
envelope soliton decreases exponentially �
e−2��� �25�. This
decrease means that the norm of the soliton decays like M

e−�Stt for the Stokes damping and like M 
e−2�hy�1−cos�k��

for the hydrodynamical damping. If the discreteness effects
are negligible �co−1 small�, the norm of the soliton, mea-
sured in the simulations, should show an exponential de-
crease.

As one can see in Fig. 2�a�, this property is fulfilled for
both the Stokes and the hydrodynamical damping. The
damping rate of the norm in the case of hydrodynamical
damping is k dependent and is plotted in Fig. 2�b� for three

different wave numbers k= �0.4� ,0.6� ,0.8��. The agree-
ment with the theoretical prediction is very good, except for
the smallest value of the wave number �k=0.4��, where the
theoretical curve begins to differ from the simulation results.
This deviation occurs for small wave numbers since the car-
rier wavelength �c is no longer distinctly smaller than the
envelope width �e, a condition which was used in the mul-
tiple scale method to derive the NLS-type equations. The
quantity M�t� may be used to estimate whether the con-
tinuum approximation is appropriate. For the parameter
range �co�1.1,k→0� the theory is unable to produce good
agreement with the simulations since the underlying multiple
scale scheme fails.

We focus on the differences between the predictions for
the CV in the continuum and the quasi-continuum approxi-
mation of the damped chain. Therefore, we will compare the
results ��xs� from the simulations with the behavior for the

FIG. 1. Envelope soliton �k
=4� /5, co=1.01� on a damped
chain ��St=0.001�.
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soliton amplitude A=2A of the CV theory. For low-energy
excitations �co→1� the QCA should produce the same re-
sults as the CA since the mNLS �22� passes into the NLS, but
we expect differences for high-energy excitations, where the
continuum approximations begin to fail, because the enve-
lope becomes very narrow. One should keep in mind that a
normalized velocity such as co=1.1 corresponds to a very
narrow envelope �width B�1� in relative coordinates. In
Fig. 3 we plot only the positive values of ��xs� which is the
relative displacement at the soliton center. It is obvious that
the maxima of ��xs�, which indicate the amplitude of the
lattice soliton in the simulations, show good agreement with
the QCA results. We use a chain with Stokes damping in Fig.
3, since narrow envelope solitons show certain instabilities in
the presence of hydrodynamical damping. These instabilities
occur since the hydrodynamical damping term is mathemati-
cally more complex and yields a larger number of higher-
order terms in �, which are not considered by our theory.

We return to smaller and broader envelope solitons, where
the continuum and the quasi-continuum approximation are
appropriate. We want to demonstrate the agreement between
our theory and the simulations for one more example. We
consider an envelope soliton with k=� on a damped chain
��St=0.003� of atoms. This soliton is immobile since vh���
=0 and can be compared with results in Ref. �16� for an
undamped chain. After typical times of a few t̄ the envelope
of the soliton begins to develop spatial modulations which
are symmetric with respect to the soliton position xs�t�
=xs�0�. In Fig. 4, we take a snapshot of the chain at time t
=1400�4/�St. Additionally, we plot the theoretical predic-
tion of the soliton shape, where we use the results of the
numerical solution of the equations �27�–�30� for the CVs �,
A, and B at time t=1400. Every particle is situated on the
envelope of the soliton since the factor cos��n� only yields
multiplicative constants �−1�n for the discrete variable n.

FIG. 2. Norm of an envelope
soliton �k=4� /5, co=1.01� on a
damped chain for either Stokes or
hydrodynamical damping ��a� �St

=0.003, �hy =0, �b� �St=0, �hy

=0.003�.
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The agreement with the theory is very convincing, con-
sidering the fact that the snapshot in Fig. 4 is taken at a time
when the soliton has almost disappeared. There are only mi-
nor deviations for large times in the tails of the envelope,
which could imply that the hyperbolic secans which results
from the unperturbed problem is not the perfect choice as a
trial function. The results for other wave numbers tend to be
less precise than they are in Fig. 4, nevertheless they are still
in good agreement with the simulations.

VII. CONCLUSIONS

In the present work we have generalized the QCA for
envelope solitons on anharmonic lattices for the cases of
Stokes and hydrodynamical damping. We have extended the
QCA for envelope solitons �16� to the damped chain and
derived a modified damped NLS-type equation �mNLS� to

be the evolution equation of the envelope. We applied a simi-
lar analysis as for the damped NLS �22,26� and found that
the mNLS is superior in the case of high-energy excitations
when the envelope becomes very narrow. The crucial point
of the applied method is the application of a chirped trial
function �26� for the damped envelope soliton. If one would
use the bright soliton solution as an ansatz �like in �12��, one
would omit the effects of the spatial envelope modulations
�Fig. 4�. Moreover, the adiabatic ansatz would describe the
dynamics of the amplitude and the width using only one CV
��t�. The adiabatic ansatz forces an exponentially decreasing
amplitude and an exponentially increasing width, which has
long been known to be correct only for small times com-
pared with the inverse damping constant �t��−1�.

In conclusion, we can recapitulate that the combination of
an adequate CV ansatz, which in the case of a damped en-
velope soliton means the inclusion of a chirped trial function,
with the QCA of the discrete system leads to a very good

FIG. 3. Amplitude comparison
of an envelope soliton �k=4� /5 ,
co=1.1� on a damped chain
��St=0.003�. The results for the
collective variable A=2A in the
CA and the QCA as well as the
quantity ��xs� from the simula-
tions are displayed. In order to
show the slight differences we
only present the positive values
of ��xs� in a time interval
1 /2�St� t�3/�St.

FIG. 4. Snapshot of an enve-
lope soliton �k=�, co=1.01� on a
damped chain ��St=0.003� com-
pared to the theoretical prediction
�solid line� at time t=1400. Here
the results of the numerical solu-
tion of Eqs. �27�–�30� were used.
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agreement between simulations and analytical predictions.
The QCA approximation is essential in the case of very nar-
row solitons and in our opinion results to be more elegant
than, e.g., a continuum approximation with the inclusion of

higher-order terms for the same purpose. The chirping of
approximate NLS solutions was a well-known fact in the
literature and we reported it in relation to solitons on damped
FPU chains.
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